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THE KINETIC THEORY OF GASES IN DISPERSED MEDIA* 

V.V. STRUMINSKII 

A generalization of the kinetic theory of gases to non-uniform and non- 
equilibrium systems is given, and this is used to construct a kinetic 
theory of dispersed media. 

The equations of motion of uniform liquids and gases were first obtained using Newton's 
dynamic equations at the beginning of the eighteenth century, when liquids and gases were 
regarded as continuous media, which filled the space completely /l/. At that time the idea 
of a molecular structure of materials was quite vague. These equations were later extended, 
without any proper basis, to the motion of non-uniform gaseous mixtures and liquids. It was 
assumed that non-uniform flows could be regarded as interpenetrating multicomponent systems, 
in which the elementary volumes contained approximately the same number of molecules of the 
same kind. However, it was later found that these generalizations were limited, and it was 
necessary to introduce empirical corrections, connected with the diffusion velocities and 
thermal fluxes. It was not clear in that case to what extent one could make use of the 
initial equations of motion. Only the methods of the kinetic theory of gases /2/ enabled one 
to introduce the necessary clarity into what had been essentially uncertain for a long time. 

We will show below that the applicability of the assumption of the mutual penetration of 
different components of a gas in a gaseous mixture is confined to small diffusion velocities 
and systems which are in a state close to thermodynamic equilibrium /3/. These systems can 
be described by the initial equations of hydrodynamics. It is also shown that Boltzmann's 
kinetic theory can describe multicomponent gaseous systems, which are fairly far from a state 
of thermodyhamic equilibrium, when the diffusion velocities and thermal fluxes may be 
considerable. The fundamental equations of motion, obtained for these cases, differ 
considerably from the classical equations of hydrodynamics 141. 

The first attempts to describe non-uniform disperse media, which were made at the middle 
of the present century, also without any proper basis, and to describe non-uniform gaseous 
mixtures, were based on the use of the classical mechanics of continuous mutually penetrating 
media and employed the additional concept of multivelocity interpenetrating continua /5/. 
Later, the methods of the kinetic theory of gases in combination with classical methods of 
aeromechanics were applied to disperse systems in a number of papers /6/. Investigations in 
which the conclusions of the kinetic theory of gases were applied directly to describe only 
individual characteristics of disperse media were widely used abroad /7/. Note that even the 
partial use of the methods of kinetic theory enabled the development of the theory of disperse 
media to progress. The kinetic theory of gases will also be used below to construct a theory 
of non-uniform dispersed media. 

The kinetic theory of gases was extended by Boltzmann to describe gaseous mixtures. For 
a gaseous mixture consisting of M components we will have M distribution functions fs (r, “3 4 
(s = 1, 2, . . ., M), which will satisfy the following system of kinetic equations: 

Hence, for each component of the mixture we can obtain five, generally speaking, different 
mean parameters of the flow 

n, = 
s 

f, du, V*= $- 1 uf, du, 3kT, = $. 5 .m, (u - V*)afs du 

The mean-mass parameters of the flow for the whole mixture have the form 
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(2) 

The diffusion parameters of the flow (the densities, velocities, and the temperatures) 
are 

&=po--IL W"=Uo-v*, r,=To--T, (3) 

Hence, it is clear that to describe an M-component gaseous mixture we have 5 (2M + 1) 
averaged parameters. 

When solving the system of kinetic Eqs.(l) by the Chapman-Enskog method we obtain systems 
of aerohydrodynamic equations for the mean-mass parameters of the flow. 

In the zeroth approximation we obtain Euler's system of equations. The diffusion 
velocities are zero. 

In the first approximation we obtain the system of Navier-Stokes equations. The diffusion 
velocities are small, do not influence the motion of the mixture as a whole, and are given 
by the equations 

In the second approximation we obtain the Bamett system of equations /S/. The diffusion 
velocities are now not small 

and have a considerable effect on the motion of the gaseous mixture as a whole 

(The second approximation was investigated in /9/ at the author's suggestion.) 
The above expressions also contain a number of other Bamett and diffusion terms, which 

are omitted here for simplicity. 
As can be seen, the use of the Chapman-Enskog method in the second approximation to 

describe gaseous mixtures indicates that the diffusion velocities occurring in the system 
affect the motion of the mixture as a whole and change the system of equations of motion. 
However, it is extremely difficult in this approximation to determine them in explicit form. 
Prigozhin /lo/ first pointed out the limitations of this method: the first approximation of 
the Chapman-Enskog method does not enable one to advance any further than the linear thermo- 
dynamics of irreversible processes, i.e., processes which only depart slightly from the state 
of equilibrium. 

In practice, we would expect more from Boltzmann's kinetic theory. To investigate these 
possibilities another method of solving the system of kinetic Eqs.(l) was developed in /3/ 
in the hope of describing processes which differ considerably from a state of thermodynamic 
equilibrium. In this method, system (1) is written in the form 

In the zeroth approximation J(f.'O),f.'O)) = 0, and the partial distribution functions of 
the zeroth approximation will have the form 

where V' and T, may different for different components of the mixture. Then the partial 
parameters will satisfy the following system of hydrodynamic equations of the zeroth approxi- 
mation: 

(4) 
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The right-hand sides of the equations of conservation of momentum and energy of system 

(4) are identical with the equations of the first approximation, in which, for simplicity, 

we have omitted the viscous terms, and have only retained terms which take into account the 
interaction between the individual components of the gaseous mixture, which leads to 

equalization of the temperatures and the flow velocities. 

Hence, we can now determine the averaged partial parameters for each component of the 

mixture (p,, V*, T,) taking their interaction into account, and we can then determine both the 

mean-mass parameters of the whole mixture and the diffusion velocities and temperatures, 

using relations (2) and (3). 

The successes achieved by the dynamic theory when investigating gaseous mixtures indicate, 

without any doubt, that it is worth using this powerful method to construct a kinetic theory 

of dispersed media. 

However, the history was somewhat different. In 1941 when investigating the super- 
conductivity of liquid helium, Landau /ll/ suggested considering it in the form of a mixture 

of two continuous interpenetrating media (in the static sense) namely, a normal and a super- 

conducting flow of a qunatum liquid. Despite Landau's warning that this approach is no more 

than a method of giving a graphical description, the revived representation in quantum 

mechanics of the mutual penetration of different media (in the static sense) has again been 

used in a number of papers on the dynamic theory when constructing the classical mechanics 

of considerably non-uniform heterogeneous media, which is in clear contradiction with the 

molecular structure of the material. These representations are reflected fairly fully in 

the monograph /5/. The equations of the mechanics of heterogeneous media, obtained on the 

basis of these representations, contain a considerable number of unknown functions and 

constants, defining the transfer coefficients of each component of the medium, and also 

coefficients representing the interaction between these components. These unknown constants 

are determined in this paper using quite arbitrary assumptions regarding the cellular structure 

of the medium, the operation of averaging etc. 

As already mentioned, in a number of papers (/6/ etc.) the theory of disperse media has 

been based on a combination of the methods of kinetic theory and the methods of classical 

aerodyanmics. Disperse particles are considered in the form of solid inclusions which 

interact with one another as elastic spheres. The effect of the carrying medium on the 

behaviour of the disperse particles was estimated by the methods of classical aerodynamics 

in the Stokes approximation. This combination of the methods of kinetic theory, which 

describe the behaviour of particles at the microlevel, with the methodsofclassical aero- 

dynamics, which describe the flow of particles at the macrolevel, cannot be regarded as in any 

way satisfactory, since in the first case the behaviour of the dispersed particle is random, 

whereas in the second case it is uniquely determined by the Stokes force. 

The methods developed in /7/ etc. have become widely used. Here, exact expressions, 

obtained in the kinetic theory of gaseous mixtures, in particular, expressions for the 
diffusion velocities, were used to determine the diffusion flows in disperse media, consisting 

of disperse particles of large dimensions ("macromolecules") and a carrying medium consisting 

of the molecules of an ordinary gas. 
It follows from the above that the successive use of the methods of kinetic theory, in 

the same way as in the theory of gaseous mixtures, should enable a theory of dispersed media 

to be constructed. 
We will first consider a two-component highly rarefied dispersed medium consisting of 

molecules of a certain gas and solid particles of spherical shape of much greater size. We 
can always choose the parameters of this gaseous medium and the dispersed phase so that the 

probability of triple collisions in such a system is extremely small. In six-dimensional 

phase space in an element of volume AT we have the following equations for the number of 

particles of gas and the dispersed phase: 

df, = fl (rr u, d AT, df, = fz P, u, t) AT 

If we assume that all the interaction between the molecules of the gas, the particles 

of the dispersed phase, and also between the molecules and the particles occurs in accordance 

with the laws of elastic collision, we obtain from the corresponding Liouville equations for 
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the whole system 

-$ = J (fl9 Id + J (fl, f*), -g = J (f2, fl) + J (f% fa) (5) 

In the first equation of system (5) the first term takes into account the interaction 
between the gas molecules, while the second takes into account the collisions between the 
spherical particles of the dispersed phase and the gas molecules. Since, according to our 
assumptions, the particles of the dispersed phase are much larger than the particles of gas, 
in a fairly rarefied medium the particles of the gas will change their parameters on each 
collision and this integral was not small. In the second equation the first term on the right- 
hand side describes the interaction between the particles of the mixture and the gaseous 
medium. It is well-known that in macroscopic mechanics in the Stokes approximation a definite 
force will act on the particles. However, there is no basis for a microscopic random force 
to be changed by the averaged Stokes force. This integral could then be simplified and reduce 
to corresponding terms of the Fokker-Plank equation. However, there is also no basis for this 
operation. 

As can be seen, to a first approximation, there is no basis for simplifying the system 
of Eqs.(S) considered. However, it can be written in the following form, which is identical 
in form with system (1): 

(fs'f,' - f,f,) gmb db de du. 
r=1 

The solution of the system of Eqs.(l) by the method described in /3/ leads to a system 
of aerodynamic equations, whose form is also identical with the system of aerodynamic Eqs.(4), 
in which we put 

Q’L”’ _ 
8% - 1/2nk(~+~)~~sxp(-g~)g~~+s(1-cos'~)dg 

When T, = T,, these integrals are identical with those derived in /2/. 
The fact that the system of equations for a dispersed medium is identical in form with 

the system of equations for gaseous mixtures, confirms the correctness of the method described 
in /7/, which has become widely used abroad. 

As can be seen, an intense exchange of angular momentum and energy takes place between 
the particles of the gas and the dispersed impurity; the terms which take this exchange into 
account are written on the right-hand sides of the corresponding equations of system (4). It 
is important to note that explicit expressions for the terms which take into account the 
exchange of angular momentum and energy between the carrier medium and the particles of the 
dispersed phase occur in system (4). We particulary emphasize that explicit expressions have 
been obtained not only for the structure oftheinteraciton terms, but also explicit expressions 
forthe coefficients in front of these terms. 

We made a number of important assumptions when deriving the system of kinetic equations 
for a dispersed medium, the solution of which was reduced to the aerodynamic Eqs.(4). The 
most important of these is the assumption that the medium considered is highly rarefied. Hence, 
for fairly rarefied systems, the coefficients defining the interactions, obtained above, can 
be assumed to be reliably defined. However, fairly dense dispersed systems are extremely 
important when solving many problems. It is obviously extremely difficult to construct a 
theory of the motion of dense dispersed systems. However, on the basis of experience in 
generalizing the kinetic theory of rarefied gaseous mixtures to dense gases /12/, we can make 
the following assertions: the general structure of the terms of the equations of motion on 
transferring from rarefied gaseous mixtures to dense mixtures, does not change; when there 
is a considerable increase in the density the transfer coefficients change, but not, apparently, 
to any great extent. On the basis of this it seems likely that for dense dispersed systems 
the system of equations will remain largely unchanged. 

To determine the transfer coefficients we can use the experience of the founders of hydro- 
aerodynamics, who determined the coefficient of viscosity in Navier-Stokes equations ex- 
perimentally, using the approximate Stokes solution for the slow motion of a sphere. 

We will therefore consider the simplest model of the motion of a dispersed medium, which 
is at the same time the simplest model of a boiling layer, which is of considerable practical 
importance. We will assume that there is a gaseous medium and a finely dispersed catalyst 
in an infinitely long vertical tube. In the system of coordinates shown in the figure, the 
system of Eqs.(4) for the slow motion of the medium has the form 
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/13/ 

(6! 

The coefficient D,, can be expressed directly in terms of 

Chapman-Cowling integrals, and represents the degree of inter- 

component interaction. 

For the gaseous medium we will use the adhesion condition 

u1 (zth) = 0. For a finely dispersed catalyst we will use the 

condition that the flow rate of the catalyst along the length of 

the tube is constant 

j uz(y)dy = co&= 0 
--h 

The solution of the system of ordinary differential Eqs.(6) can be written in the form 

The figure shows the flow 

strong interaction between the 

of gas and dispersed particles in a channel in which there is 

gas and the particles. As can be seen, the velocity distribution 

in the gas is similar to Poiseuille flow. At the same time, the dispersed medium in the core 

of the flow moves together with the carrying medium, while on the walls of the channel it 

moves in the opposite direction. This flow pattern of a dispersed medium in a channel is 

confirmed by experiment. 

Ul (Y) = ’ (% 2 w1+ Pz) + w) (Y" - w 
us(Y) = I 2 @l+ IL4 (g + w) (Y" - $) 
P=P1f&, p=p1+pa 

The accurate solution obtained can be expressed in terms of the macroscopic parameters 

of the medium, such as Pl, Pz, p,, p,, and also in terms of the three parameters ~1, PZ. &z 
defined by the microstructure of the medium. For rarefied dispersed media these three para- 

meters can be calculated from the above expressions. However, as already pointed out, there 

is no absolute guarantee that these three parameters will correctly describe dense dispersed 

media. The explicit expressions obtained above for the two velocity distribution functions 

enables one, from their values at individual points of the flow, to determine the two 

constants at certain points of the flow. 
If the carrying medium is, for example, water, one of the coefficients will be known. 

There are two others: pLe the coefficient of viscosity of the dispersed phase, and dlz - the 

coefficient of interphase interaction; they can be found, for example, from the values of 

uWX when y = 0, and u2 when y =&h. As can be seen, only from the data of systematic 

experimental research, using the exact solutions of system (6), can one determine the unknown 

coefficients p2 and d,, for dense dispersed media. It then becomes possible to compare the 

data of kinetic theory for extremely rarefied dispersed media with experimental results. In 

this case, obviously, for large densities, experiment should introduce corrections to the 
theory of dense dispersed media. 

1. 

2. 

3. 

4. 

5. 
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The author thanks V.E. Yakir for useful discussions and help in preparing this paper. 
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ON THE STABILITY OF THE STEADY-STATE MOTIONS OF SYSTEMS 
WITH QUASICYCLIC COORDINATES* 

V.V. RUMYANTSEV 

The stability of the steady-state motions of a system with quasicyclic 
coordinates under the action of potential and dissipative forces and 
also forces which depend on the quasicyclic velocities is investigated. 
The results are applied to the problem of the stability of the steady- 
state plane-parallel motions of a rotor on a shaft which is set up in 
elasticated bearings with a non-linear reaction /l/. 

The stability of the stationary motions and relative equilibria of 
systems with a single cyclic (quasicyclic) coordinate has previously 
been investigated /2/ from a common point of view. The question of the 
stability of the stationary motions of systems with quasicyclic coordinates 
under the action of constant and dissipative forces has been considered 
in /3/. The results obtained in /2/ have been generalized /4/ to 
systems with several cyclic (quasicyclic) coordinates and, additionally, 
a third regime of uniform motions, which includes the regime considered 
in /3/, has also been investigated. 

1. Let us consider a holonomic mechanical system which is characterized by a Lagrange 
function 15 = L (Qit qi', vi), where qi (i = 1, ., k),cpj (j = k $- 1, . . ., n) are generalized coordinates 
and qi’s dqildt, ‘pi’s dT,ldt are the generalized velocities of the system and, moreover, the 
function L is explicitly independent of the coordinates Cpj and the time t. Such a system with 
cyclic coordinates 'pj may execute stationary motions 

Qi = Qio, pi' = 0; Cpj’ = Ojp Cpj = 6Jjt + Cpjo (1.1) 

in which the positional coordinates qi and the cyclic velocities mj' remain constant over the 
whole time of the motion. At the same time the constants oj are either specified arbitrarily 
within certain limits and the constants qiO are determined from the equations 

aLlag, = 0 (1.2) 

in which it follows to put qi’ = O,cpj’ = oj or qiO and oj are determined from Eqs. (1.2) andthe 
first integrals of the equations of motion 

3LlaCpj’ = Cj (1.3) 

in which follows to put qi’ = O;cj are arbitrary constants of integration. Here and everywhere 
subsequently 

i,l=1,..., k; j,s=k+l,..., n_ 
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